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Abstract

The results of recent developments on modelling of supramolecular ordering and physicochemical

properties of molecular mixtures have been reviewed. The main attention is paid to the unified ap-

proach based on a generalised quasichemical model for a set of thermodynamic, dielectric and opti-

cal properties of mixtures, self-organized by specific bonding. Interrelations between thermody-

namic, as well as dielectric, and optical properties of liquid mixtures, reflecting different molecular

parameters, and the characteristics of quasichemical processes are presented. Applications for ther-

modynamic functions of mixing, permittivity, coefficients Rayleigh light scattering in molecular

mixtures are considered. Data on thermodynamics of aggregation in mixtures have been obtained.

Keywords: modelling of supramolecular ordering of molecular mixtures, physicochemical proper-
ties of molecular mixtures

Introduction

The development of the theory of liquids is based upon fundamental investigations of

their structure, the nature of molecular interactions, and dynamic processes proceed-

ing during the thermal motion of molecules. The increasing role of investigations of

liquids by combining the methods, as well as the problem of design of liquid materi-

als on the molecular-structural level, require approaches for analyzing and predicting

a set of macroscopic properties on the basis of a general concept. Model approaches

are applied mainly to complex molecular liquids. Among these the lattice model for

thermodynamic properties of molecular mixture, based on Guggenheim–Barker the-

ory and its further modifications, and especially the quasichemical model for self-

organised specific bonding liquids must be mentioned [1–4].

In the framework of the quasichemical concept the processes are represented by

the equations of chemical reaction:
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where Mi designates the type of the i-th reagent, νiα and ′ν αi denotes the stoichiometric

coefficients of one in the reaction α, ξα, and Aα denotes the degree of advancement (or

extent), and the thermodynamic affinity of the quasichemical process α respectively,

and µi here is the chemical potential of the i-th reagent.

Quasichemical models combine both macroscopic and molecular-statistical the-

ory. Really one can treat this approach as an extension of chemical thermodynamic

and kinetic methods to internal processes occurring in matter; such as reorganizations

of intermolecular structure, and in particular, the association processes, the processes

of energy transfer between molecular degrees of freedom, conformation transitions

of molecules, and related fluctuation phenomena. Molecular-statistical models are

used to specify the nature of processes described by Eq. (1), and to derive equations

for physicochemical properties [3, 4].

The quasichemical method has usually been applied to thermodynamic and

spectroscopic properties of liquids [1, 2, 5]. Recently, along with the elaboration of

thermodynamics of association models [6, 7], this approach has been extended to di-

electric [8–10], optical [3, 11], and kinetic [12] properties of molecular mixtures. The

object of this present article is to characterise some of these results and its applica-

tions.

Characteristics of quasichemical models

We have to decide on the next interrelated problems for describing supramolecular

ordering and properties of liquids in the quasichemical approach. Firstly we have to

describe the structure, composition, electrical, optical properties of the supramolecu-

lar species. Secondly we have to develop the thermodynamics of these and thirdly we

have to derive the equations for macroscopic thermodynamic, electrical, optical, ki-

netic properties of mixtures.

The topological features of the supramolecular form, the most typical of them –

linear, cyclic, branched star-, comb, tree-like, and net-like must be taken into account.

Mainly the number of specific bonds formed by molecules determines these features.

If the number of bonds is not greater than two, chain or cyclic associated species are

possible, e.g., monohydric alcohols and phenols, monobasic acids, N-amides,

amines, hydrogen halides. If the molecule is involved in three or more specific bonds

(e.g. water, polyhydric alcohols, polybasic acids, etc.) branched and spatial networks

structures can be formed [3, 4, 12].

The models of one component homogeneous association (models A1+B1+Bn,

and A1+B1+B2+...+Bn+...), and models with complexation of components (models

A1+B1+A1B1 and A1+B1+A1B1+A1B2), were mainly considered [1, 2, 5]. This author

examined for the first time a mixture of associated species of arbitrary composition.
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Consider a binary solution of components A and B and suppose molecules a and

b contain groups of atoms a1, a2 and b1, b2 respectively. These groups take part in the

following bonding: a1 ... a2=aa, a2...b1=ab, b2... a1=ba, and b1...b2=bb. Thus for an

N-monosubstituted amide – monohydric alcohol mixture these bonds are CO...HN
(aa), NH...OH (ab), OH...OC (ba), OH...OH (bb) (3):

In general each pair of molecules can form a specific bond, e.g. OH...OH, in one

of the several ways which differ in the spatial disposition of the molecules. Thus the

oxygen atom of alcohol has two lone pair of electrons and the OH...OH bond can be

either of type ‘1’ or ‘2’; a similar situation occurs also with N-amides (3). I refer to

ways of bonding as the states of bond and denote them by the index li. One can as-

sume the number of the states of bond q j j1 2
(j1, j2=a, b) are equal, therefore

qaa=qab=qba=qbb=q. Thus, the associated species comprising n molecules is described

by the sets of subscript {n, j1, j2, ... jn, l1, l2, ... ln–1} ≡ n, {jk}, {li}, where the index jk=a,b
(k=1, 2,...n) indicates the type of the k-th molecule, and the index li=1, 2,..., q
(i=1, 2,...n–1) denotes the state of the i-th bond in it:

Thus, we consider associated species of arbitrary composition with different

ways of bonding. In particular allowance for the latter factor leads to the structural

polyvariability of the associates. Actually starting from the first ‘root’ molecule vari-

ous ways for further growth of the associated species are possible. Thus, we obtain

the variety of supramolecular structures. The properties of these associates, e.g.,

structure, dipole moment, polarizability tensor, etc., differ, as do the macroscopic

properties of the respective liquid systems. Altogether, this required the development

of approaches for describing microscopic properties of supramolecular species and

corresponding ones for macroscopic properties of mixtures.

Thermodynamics of associated species mixtures

Prigogine–Defay equations [5] mA=ma, mB=mb, relating the chemical potentials of so-

lution components µA and µB, and those of monomer molecules µa and µb, are the

starting point for determining interrelations of thermodynamic properties of solution

and microscopic properties of supramolecular species. In a symmetrical reference
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system [5, 13] these equations leads to the following expressions for the activity coef-

ficients of component γA, γB:

γ γ
γ

γ γ
γA

a a

a a A

0 B
b b

b b B

0
= =x

x x

x

x x
, (5)

where x denotes the mole fraction, γa, γb denote the activity coefficients of the mono-

mer molecule; bar henceforth used for the quantity referring to the pure component.

The specific form of Eq. (5) is determined by both the types of associative equilibria

and the theoretical model applied for the mixture of associate. The expressions for the

excess thermodynamic functions, such as Gibbs energy GE, enthalpy of mixing HE

can be derived from Eq. (5) by the standard procedure [5, 13].

The hierarchy of theoretical models of an associated species mixture is defined

by the description of universal interactions, determining the deviations from ideal so-

lution, has been reviewed in [3, 4]. A model approach for molecular interaction con-

tributions to thermodynamic functions (Gibbs energy, enthalpy, and entropy) of mix-

tures was developed [6, 7, 12, 14]. Repulsive interactions are treated within the

framework of the Flory approach, dipole interactions are described using a self-con-

sistent Onsager’s reaction field model, dispersion interactions are taken into account

by a one-centre continuous approach, and specific cases are dealt with by the associa-

tion model. Thus the activity coefficients γA, γB (Eq. (5)) and excess thermodynamic

functions (e.g. enthalpy of mixing HE) include three contributions, corresponding

first, associative, second, dispersion and third, dipole forces:

γ γ γ γA(B) A(B)

ass

A(B)

dis

A(B)

dip E E, ass E, dis= = +, H H H H
E, dip

(6)

The first terms in Eq. (6) describe deviations from ideal solution due to the re-

pulsion and specific attraction interactions:
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In Eq. (7) Ca,b are the molar concentrations of the monomer molecules a and b,

xA,B

0 and ϕA,B

0 are the stoichiometric mole and volume fractions of the component, nA ,

nB are the average number of association in individual liquids A and B, and nAB is an

average number of association in solution, determining the mean number of mole-

cules in aggregates:

{ }{ }
{ }{ }

n C C CAB A

0

B

0

n, j l

n, j l
k i

k i

= + ∑( )/ (8)

where CA

0 , CB

0 are the stoichiometric molar concentrations of the component.

The formation of aggregates is described by the equilibrium dimerization con-

stants { }K j j l1 2 i
and, for formation of the higher-order (n≥3) associated species

{ }′K j j l l1 2 i 2
. The molar concentrations of associated species are given by the formulas:
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The total concentration of associated species and monomer molecules is given

by Eq. (10) derived by the matrix technique [3, 8, 14]:
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where
~
C =[Ca Cb], E2q is the unit matrix, and Iq is the vector consisting of units, and
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The mean number of association nAB (Eq. (8)) is expressed as follows:

n
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In Eqs (10) and (12) the stoichiometry of the aggregation is included in the ma-

trices V, V´ (Eq. (11)). Thus, if in the matrices V, V¢ only Vbb, V´bb are the non-zero

blocks, it corresponds to the solution of an associating substance B in an inert solvent

A, model A1+B1+B2+...+Bn+.... If as Vba, V´ba≠0, as Vbb, V´bb ≠0, it relates to the solu-

tion of an associating substance B in a solvating solvent A, model A1+B1+B2+...+Bn

+...+A1B1 +A1B2 +...+A1Bm+..., etc.

The multipliers γA,B

dis and γA,B

dip
in Eq. (6) describe the contribution of dispersion

and dipole interactions to the non-ideality of a solution respectively; corresponding

expressions for those have been given in works [3, 4, 6, 7]. The approach developed

relates the thermodynamic non-ideality to molecular properties. The molecular force

contributions to Gibbs energy, enthalpy, and entropy of pure liquids have been calcu-

lated. For moderately polar substances such as monohydric alcohols the major contri-

butions come from the dispersion interaction and H-bonding, whereas the longe-

range constituents of dipole force is of only minor importance. As to the strongly po-

lar N-amides the three contributions mentioned are comparable. The heat of evapora-

tion of polar associated liquids is reproduced quite well [3, 4].

The multivariance of the associated species as far as both the composition and

structure is concerned results in different types of dependence of mixing functions on

solution composition. For the formation of homogeneous associates the influence on

thermodynamic functions is essential if there is a difference in the stoichiometry of

association, e.g., dimerization B1+B2 and the continuous association B1+B2+...+
Bn+.... Thus models with the same stoichiometry and different associate structure,

e.g., linear and cyclic dimers cannot be discriminated by thermodynamic study. Cor-

responding information cannot be obtained either by IR and NMR spectroscopy tech-

niques, as well by diffraction methods.
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Thus progress in the study of long-range supramolecular ordering in mixtures

has proved to be possible on the basis of an approach for the permittivity and Ray-

leigh light scattering.

Quasichemical models in the dielectrometry of mixtures

The application of dielectric constant data to study supramolecular organisation of

liquids is based first on models of mixtures of associated species, and second on the

theory of dielectric properties. The following equation was obtained for the permit-

tivity of a mixture εs on the basis of fundamental equation given by Frohlich [15] by

the semi-microscopic method for separating the orientational and deformational

polarisation’s [9]:
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where mj is the dipole moment of a molecule and µ j

* is of a sphere in the dielectric

with a fixed one molecule in it, g j kj

d

j j

*

j
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factor of the j-th component. The dipole factor of the solution g s

d is given by the for-

mula:
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The deviation of dipole factors of g s

d , g j

d (Eqs (13) and (14)) from unity is due to

the correlations of molecular dipole moments. Equations relating the dipole factors to

the structure of a supramolecular species and the thermodynamic parameters of their

formation were obtained in [8].
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Fig. 1 Temperature variation of the average number of association of methanol
(∆T=253÷493 K)



The relationships derived allow quite detailed data to be obtained on the compo-

sition, structure and thermodynamics of aggregation, inaccessible by other methods

particularly as regards long-range molecular correlations. Models with the same

stoichiometry of associates and different structures to those (e.g., chain-like and cy-

clic) may be distinguished, even qualitatively. The applications to monohydric acy-

clic, alicyclic, and aromatic alcohols, and N-amides was demonstrated; there is the

possibility of a fairly reliable discrimination of the models [3, 4]. The association

constants, the enthalpy DH and enthalpy DS of H-bonding (Tables 1, 2) were found.

These models both enable a description of permittivity over a wide temperature

range.

Table 1 Enthalpy DH (kJ mol–1) and entropy DS (J mol–1 K–1) of the association in n-alkanols

Alcohol CH3OH C2H5OH C3H7OH C4H9OH C5H11OH C6H13OH C7H15OH

–∆H 19 19 20 20 19 19 19

–∆S 48 52 69 62 57 57 60

–∆H′ 21 22 22 21 22 22 22

–∆S′ 46 50 58 59 59 59 66

Table 2 Enthalpy DH (kJ mol–1) and entropy DS (J mol–1 K–1) of the association for the alicyclic
and aromatic alcohols

Alcohol –∆H –∆S

Cyclohexanol 26 72

4-Methylcyclohexanol 23 65

1-Cyclohexylpropanol-1 13 46

Phenylmethanol 20 64

2-Phenylethanol 21 65

1-Phenylethanol 18 56

Phenyl-t-buthanol
16 (l) 49 (l)

15 (c) 58 (c)

Especially the long-range correlations by H-bonding must be underlined. Thus

the mean number of association n in pure alkanols is equal to ten and above at room

temperature and increases with decreasing temperature (Fig. 1). Analysis of the size

distribution of methanol aggregates shows that in pure methanol at T=293 K the frac-

tion of aggregates containing more than 40 molecules is 38%, and the fraction of

those consisting of more than 80 molecules equals 14% [4].

Quasichemical models in Rayleigh light scattering

Rayleigh light scattering can be subdivided to isotropic scattering and anisotropic one

[16]. Isotropic fluctuation of permittivity (refractive index, ε=n2), and Rayleigh coef-
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ficient are usually expressed as a sum of the terms, interpreted as due to independent

fluctuations of temperature, density, and concentration:

R is
is T p x

≈ = + +∆ ∆ ∆ ∆ε ε ε ε2 2 2 2 (15)

It must be mentioned firstly that the usual consideration of the terms in Eq. (15)

reflecting independent fluctuations is incorrect because of the density-concentration

fluctuation correlation. In reality the last two terms in Eq. (15) are determined as a re-

sult of correlated fluctuations of those. Secondly the traditional approach fluctuations

of internal variables such as the extent of the quasichemical process {ξα} [Eq. (2)] are

not taken into account [3, 12, 17].

Isotropic light scattering due to concentration fluctuations Ris, conc is related to the

activity coefficients γA and γB by the Einstein–Smoluchovsky equation. Thus investi-

gation of the nature of the concentration fluctuations is possible. The estimation of

the contribution of fluctuations of the quasichemical process {ξα} to thermodynamic

functions and to isotropic scattering was discussed in works [3, 4, 12].

The Rayleigh ratio for anisotropic scattering Ran is determined by the average

molecular anisotropy <γ2> [3, 16]:

Ran∼ γ2 2=g
opt γ , Ran, s∼ γ2

1

2= =
=

∑ξ γ γj

0

j

k

j

opt

j

2

j

opt

j j j
γ γ γ γ, / (16)

where γ2 is the molecular anisotropy, gopt, g j

opt
are the optical correlation factors in liq-

uid and in mixture, which are determined by the correlation of the axes of the molecu-

lar polarizability tensor. Equations relating the optical factors to the structure of a

supramolecular species and the thermodynamic parameters of their formation were

obtained in the studies [3, 12].

The dipole factors g j

d (Eqs (13) and (14)) are determined by the mutual orienta-

tions of dipole moments, and the optical factors g j

opt
(Eq. (16)) by those of molecular

polarizability. Thus joint application of these methods allows complementary infor-

mation on the structure of supramolecular species to be obtained. Since both correla-

tion factors are defined as concentration of associates as by the orientational potential

of the molecule there is a possibility of calculating dielectric properties a priori from

optical ones and vice versa. Thus for methanol involving complex association the ex-

perimental value of <γ2>(exp.)=(0.31±0.04) 10–48 cm6 and the calculated value of

<γ2>(cal.)=0.34 10–48 cm6 coincide [18].

Applications for binary mixtures

We will characterise some applications to the study of supramolecular ordering in bi-

nary solutions, which rely on the analysis of the thermodynamic, dielectric and optic

properties.

First we considered mixtures with weak structural ordering formed by non-polar

and polar molecules, e.g. benzene, tetrachloromethane, cyclohexane, trichlorometh-

ane, dichloromethane [20], as regards both the comparison with strongly ordered sys-
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tems and probing the methods for molecular interaction contributions to thermody-

namic properties of the mixture. The approach satisfactorily describes the excess

Gibbs energy GE, enthalpy HE, and entropy SE; the greatest contributions to the excess

function are made by the dipole interactions.

The binary mixtures essentially with supramolecular ordering can be divided ac-

cording to thermodynamic properties of those with either negative or positive devia-

tion from ideal solution [5, 13]. For these systems, on the basis of general results, the

specific equations for thermodynamic functions of mixing, permittivity, and coeffi-

cients of light scattering were derived. The properties of the mixture are considered

over as wide a concentration and temperature range as possible to incorporate the ex-

perimental data.

Binary mixtures with the negative deviation from ideal solution

The mixture acetone–chloroform [19] and dimethylsulfoxide–chloroform [20] were

considered as systems with a negative deviation from ideality. The aggregation pro-

cesses in acetone–chloroform mixtures were described by the model A+B+AB+AB2,

and for acetone–dimethylsulfoxide mixtures it as found necessary also to include

dimerisation of dimethylsulfoxide (model A+B+AB+AB2+A2) where symbol A

means acetone or dimethylsulfoxide and B denotes chloroform. The parameters of the

model were the constants of complex formation, K1, K2, corresponding to the equilib-

ria A+BÛAB and AB+BÛAB2, and also the constant K3 for the dimerisation of

dimethylsulfoxide.

The activity coefficients γA, γB, thermodynamic functions GE, HE, SE, permittivity

εs and Rayleigh ratios R90,is and R90,an in the temperature interval DT=288–328 K of the

acetone–chloroform mixture have been analysed [19]. The constants K1 and K2 were

calculated by solving the inverse problem for excess Gibbs energy GE. From the equi-

librium constants K1 and K2 the enthalpies of complex formation DH1≅
DH2= –9±1 kJ mol–1, and the entropies DS1= –25±5 J mol–1 Κ, DS2= –38±5 J mol–1 K–1

were found. The excess enthalpy HE, entropy SE, permittivity εs, and Rayleigh ratios

for the concentration R90,conc and anisotropic R90,an scattering were calculated without

additional adjustment of the parameters.

The model explains a significant negative deviation thermodynamic functions

GE, HE, SE, from ideality. The major contributions to the activity coefficients and the

excess functions are made by the specific interactions. For the activity coefficients

and excess Gibbs energy the role of the universal interaction is reduced to partial

compensation of the association contribution. Universal interactions lead to the de-

pendence of the ‘concentration’ equilibrium constants on the mixture composition,

which is varied up to 30%, and to the essential variations of the concentration of com-

plexes in comparison with the commonly applied IAS model [1, 2, 5]. The dipole

contribution to the excess enthalpy and entropy are larger but do not play the leading

role either. The model gives fairly good reproduction of the permittivity and dipole

factor. The dipole factor larger, than unity, demonstrates the tendency towards paral-

lel alignment of the molecular dipoles in complexes AB and AB2, and predicts small
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negative deviations (within 15–20%) from the linear dependence the Rayleigh ratio

for anisotropic scattering. As to concentration scattering its intensity is very weak as

a result of the large negative deviation from ideality in this mixture.

In general the proposed models describe the thermodynamic functions of mix-

ing, as well as permittivity, and coefficient of light scattering in the whole range of

concentration of the mixtures and over a wide temperature interval. The results ob-

tained display a weak manifestation of supramolecular ordering in dielectric constant

and anisotropic scattering due to both a small degree of association (nAB ≤1.3) and the

structure of complexes in the acetone–chloroform and dimethylsulfoxide–chloroform

mixtures with negative deviation from ideality. Thus the molecular correlation ex-

tends to no more than one or two co-ordination shells.

Binary mixtures with positive deviation from ideal solution

The second type of binary mixtures that demonstrate generally positive deviation

from ideality comprises alcohol solutions. We can recognise at least three types of

mixtures of monohydric alcohol [3]. First, solutions of alcohol in non-polar ‘inert’

solvents like cyclohexane–cyclohexanol [21]. Second solutions of alcohol in non-

polar ‘solvating’ solvent, e.g. tetrachloromethane–methanol [22]. Third solutions of

alcohol in polar ‘solvating’ solvent, e.g. cyclohexanone–cyclohexanol [23] and

cyclohexanone–methylcyclohexanol [24].

Association in the mixture cyclohexane-cyclohexanol was described by the

model A1+B1+B2+B3+...+Bn+..., hereinafter A denotes the molecule of the solvent,

and B alcohol. The systems of the second and third type were treated using the model

A1+B1+B2+B3+...+Bn+AB1+AB2+AB3+...+ABm+ ....
The parameters of the model were the equilibrium constants of the association of

alcohol K and K¢, corresponding to the reactions B+BÛB2 and Bn+BÛBn+1, n≥2 for

the chain-like association of alcohol, and the constant for the complex formation (sol-

vation) of monomers and aggregates of alcohol with the solvent Ks, reaction

A+BnÛABn, and the structural parameters of associates.

The constants of alcohol association K and K′, as well as the structural parame-

ters were determined by analysis of permittivity of pure alcohols [25, 26]. If there

were no solvation, as in the case of the cyclohexane–cyclohexanol mixture, these pa-

rameters in principle are sufficient to describe other properties over the wide concen-

tration and temperature ranges. The solvation constant Ks was estimated using a fit-

ting procedure for the excess Gibbs energy of tetrachloromethane–methanol mixture,

or for the dipole factor in the mixture ketone–alcohol. The excess enthalpy and en-

tropy, the permittivity, and Rayleigh ratios R90,conc, R90,an were calculated without addi-

tional adjustment of parameters.

The permittivity of the cyclohexane–cyclohexanol mixture was considered at

∆T=298–423 K, activity coefficients and excess functions at ∆T=298–328 K [21].

The enthalpies and entropies of H-bonding of alcohol were found DH=DH¢=

–28±2 kJ mol–1, DS=DS′= –76±4 J mol–1 K–1. The positive deviation from ideality in

this mixture is explained by the association of alcohol, as well as to less extent by di-

J. Therm. Anal. Cal., 62, 2000

24 DUROV: MOLECULAR MODELLING



pole interactions. Chain-like association determines the dipole factor above unity.

Neglecting weakly polar aggregates of cyclohexanol probably causes overestimated

values of the dipole factor in the region of low alcohol content.

Permittivity of the tetrachloromethane–methanol mixture was considered at

∆T=278–328 K, activity coefficients and excess functions at ∆T=293–353 K, and

Rayleigh ratio at T=293 K [22]. The enthalpies of association of methanol are equal,

DH≈DH′= –20±3 kJ mol–1; and its solvation by the tetrachloromethane DHs=

–16±3 kJ mol–1; the corresponding entropies are DS»DS′= –20±5 J mol–1 K–1, DSs=

–24±5 J mol–1 K–1.

The contribution from dipole interaction to excess Gibbs energy and enthalpy

are comparable with the association contribution and do not reduce to a partial coun-

terbalancing as was the case for the acetone–chloroform mixture. The theoretical

curve for permittivity do not give a very good fit with the correlation factor for the re-

gion of low concentration of methanol and the reason may lie in the neglect of the

weakly polar cyclic aggregates. This disagreement reduces substantially in the case

of permittivity. There exist great concentration fluctuations in the tetrachloro–eth-

ane–methanol mixture, and thus the concentration light scattering in it measures

70–80% of the entire scattering. The Rayleigh ratio for concentration scattering fits

the experimental data fairly well. The intensity of anisotropic scattering is about 1–2

orders less and is defined with poor accuracy. There are no satisfactory data available

on anisotropic scattering for the whole composition range. However for pure metha-

nol the model predicts the mean molecular anisotropy in good agreement with experi-

mental data [18].

The mean numbers of association tetrachloromethane–methanol mixture at

T=293 K are presented in Fig. 2. The number of association nAB decreases upon dilu-
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Fig. 2 Average number of association of mixture nAB (lines 1, 2) and number of associ-
ation of alcohol nB (lines 3, 4) in tetrachloromethane-methanol mixture at
T=293 K, xB

0 is the mole fraction of methanol. Lines 2, 4 are calculated without
allowance for solvation



tion. The solvation slightly increases the number of association nAB, but decreases

considerably the values nB.

In the cyclohexanone–cyclohexanol and cyclohexanone–4-methylcyclohexanol

mixtures with the same stoichiometry of aggregation due to the polarity of the

solvating molecules of ketone a detailed description of the structure of the complexes

of ketone with molecules and associates of alcohol was necessary [23, 24]. The

permittivity of the cyclohexanone–cyclohexanol mixture was considered at

∆T=298–423 K and model gives a good reproduction of the experimental data. Com-

plex formation and polarity of the ketone lead to a faster decrease of dipole factor on

dilution of the alcohol compared with the above-considered mixtures of alcohol with

non-polar solvent. The enthalpy of complex formation alcohol and ketone was found,

∆Hs= –23±8 kJ mol–1, to coincide with the enthalpy of H-bonding in alcohol; the en-

tropy of solvation is DSs= –46±10 J mol–1 K–1. Competition between processes of as-

sociation and solvation yields a weak positive deviation from ideality. Solvation in-

creases the number of association nAB due to the fact that the enthalpy of complexation

alcohol and ketone are very close, but greatly decrease the number of association of

alcohol nB in comparison with the cyclohexane–cyclohexanol mixture.

In general for all three types of alcohol solutions with positive deviation from

ideality the quasichemical approach gives quite a good description of thermodynamic

functions, permittivity, and coefficients of light scattering. In alcohol mixtures firstly

the contribution of H-bonds to thermodynamic functions is comparable with those

from the dipole and dispersion forces, and secondly, the number of association dra-

matically decreases on dilution, which generally results in a positive deviation from

ideality.

The analysis of a set of physicochemical properties confirmed the ideas about

the long-range molecular correlations in liquid self-organised by H-bonding [3, 4,

27]. In molecular liquids the supramolecular species are realised with the number of

particles nearly ten and larger for quite normal parameters of liquid state. This result

appears important for a new understanding of both the structure and properties of liq-

uids.

Conclusions

The background of the unified quasichemical approach to thermodynamic, dielectric,

and optical properties of molecular mixtures has been elaborated in general. The re-

sults presented demonstrate a way in which in a unified description a set of the

physicochemical properties of mixtures can reflect the different molecular parame-

ters, as well as quantitative analysis of the supramolecular ordering. Moreover a part

of the results was obtained a priori creating a new possibility for predicting proper-

ties and design of liquid materials at the molecular-structural level. The methods de-

veloped can be employed to study supramolecular structure in many similar molecu-

lar systems. The importance of the quasichemical approach for investigating dynamic

processes in molecular liquids may be mentioned. Firstly there is the theory of kinetic

coefficients of non-equilibrium thermodynamics. Secondly there is the theory of re-
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laxation acoustic, dielectric, spectra. Thirdly there is the application to kinetic pro-

cesses occurring in liquids, e.g. to dynamics of the supramolecular reorganisation, an

energy transfer, and intramolecular transitions.

* * *
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